Трехфазный асинхронный двигатель в однофазной сети

Как использовать трехфазный асинхронный двигатель для работы в однофазной сети

Как использовать трехфазный асинхронный двигатель для работы в однофазной сети

Существует немало схем подключения трехфазных двигателей для работы в однофазной сети. Наибольшее распространение получили 2 схемы. В том случае, когда рабочее напряжение сети составляет 220 В, а для двигателя есть возможность подключения, как 220, так и 380 В, то следует использовать для подключения схему ниже.

При этом осуществлять подключение трехфазного двигателя по данной схеме рекомендуется с использованием конденсатора. Емкость рабочего конденсатора для подключения электродвигателя рассчитывается по такой формуле.

Трехфазный асинхронный двигатель в однофазной сети

В ней указан параметр Р — это мощность электродвигателя. Если по какой-то причине двигатель не запускается, то следует использовать пусковой конденсатор. Емкость пускового конденсатора выбирается в 3 раза больше, чем емкость рабочего конденсатора. Рабочее напряжение конденсаторов для подключения электродвигателя должно быть в 1,15 раз больше, чем напряжение в электросети.

Какие конденсаторы применяются для подключения электродвигателя

Для подключения трехфазного электродвигателя можно использовать частотные, металлобумажные, герметизированные и термостойкие конденсаторы. В качестве пусковых конденсаторов для подключения двигателя предпочтительно брать электролитические конденсаторы.

Какие конденсаторы применяются для подключения электродвигателя

Основная функция пускового конденсатора — запустить ротор двигателя. После запуска мотора пусковой конденсатор сразу же разряжается и отключается.

Схема подключения трехфазного двигателя к 220 В

При таком подходе к подключению трехфазного двигателя можно практически полностью сохранить его рабочую частоту вращения. Использование конденсаторов при подключении позволяет получить до 70% мощности трехфазного электродвигателя при работе в однофазной сети 220 В.

Как определить начала и концы статорных обмоток электродвигателя

Как правило, вывода статорных обмоток двигателя имеют специальные бирки с указанием начал и концов. Однако по разным причинам часто бирки на выводах отсутствует, что приводит к определённым сложностям при подключении двигателя. Поэтому приходится определять начала и концы статорных обмоток самостоятельно.

Для этих целей можно использовать контрольную лампу. Порядок определения начала и конца выводов статора следующий:

  • Сначала берётся один из 6 проводов статора и подсоединяется к фазе через рубильник, который должен быть выключен;
  • Затем к нулевому проводнику сети подсоединяют контрольную лампу;
  • После этого включается рубильник, и лампой прикасаются до каждого свободного вывода статора, пока она не загорится.

Как использовать трехфазный асинхронный двигатель для работы в однофазной сети

Таким образом, можно определить, где начало, а где конец статорной обмотки электродвигателя.

Обозначение выводов обмоток

Выводы обмоток обозначаются следующим образом: Я1 и Я2 — это обмотки якоря, Д1 и Д2 — это обмотки дополнительных полюсов. С1 и С2 — последовательная обмотка возбуждения, а Ш1 и Ш2 — шунтовая параллельная обмотка возбуждения.

К1 и К2 — компенсационная обмотка. Встретить её можно только на очень мощных электродвигателях, мощность которых составляет более 150 кВт. Концы обмоток одного наименования обозначаются цифрами: 1,2,3,4,5,6. При этом ток во всех обмотках при правом вращении электродвигателя протекает от начала (цифра 1) к концу (цифра 2).

Оценить статью:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (2 оценок, среднее: 5,00 из 5)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

восемнадцать − 5 =

Adblock
detector